
MEMETIC ALGORITHMS TO MINIMIZE TARDINESS ON A SINGLE MACHINE
WITH SEQUENCE-DEPENDENT SETUP TIMES

Paulo França, Alexandre Mendes and Pablo Moscato

Departamento de Engenharia de Sistemas - DENSIS
Faculdade de Engenharia Elétrica e de Computação - FEEC

Universidade Estadual de Campinas - UNICAMP
e-mail:{franca, smendes, moscato}@densis.fee.unicamp.br

ABSTRACT

The Single Machine Scheduling (SMS) problem is one of
the most representative problems in the scheduling area.
In this paper, we explore the SMS with time constraints
(setup times and due-dates) and the objective function is
the minimization of total tardiness. The chosen method is
based on a hybrid-genetic algorithm, which belongs to the
memetic algorithms class. Results are compared against
genetic algorithms, multiple start, the constructive
heuristic ATCS proposed by Lee et al. (1997) and an
EDD Insertion procedure.

1. INTRODUCTION

Under the generic denomination of single machine
scheduling we understand one of the first studied class of
problems in the scheduling area as the survey paper by
Graves [3] shows. The SMS problem with sequence-
dependent setup times is present in many industrial
manufacturing systems, as pointed out in [6]. In this
problem, the processing of a job requires a setup time
which depends on the predecessor job.

The SMS problem can be described as:
Input: Let n be the number of jobs, indexed 1, 2, ..., n, to
be processed in one machine. Consider that all jobs are
available for processing at time zero. Given a list {p1, ...,
pn} of processing times and a list {d1, ..., dn} of due dates.
Given a matrix {sij} of setup times where sij is the time
required to set up job j after job i has just finished. It is
assumed that sij need not to be equal to sji .
Task: Find a permutation that minimizes the total
tardiness of the schedule, which is calculated as:

where ck is the completion time of job k.

We should note that the problem of sequencing jobs in
one machine without setup times is already NP-hard.
Ragatz [7] proposed a branch-and-bound (B&B) method
but only small instances can be solved to optimality. The
paper of Lee et al. [4] uses a dispatching rule based on
the calculation of priority index to build an approximate

schedule, which is then improved by the application of a
local search phase. Two papers using metaheuristics have
been proposed so far. Rubin and Ragatz [8] developed a
new crossover operator and applied a genetic algorithm
(GA) to a set of test problems. The results obtained by the
GA approach were compared with the ones from a B&B
and with a multiple start (MS) and they concluded that
MS outperformed B&B and GA in many instances
considering processing time and quality of solutions as
performance measures. That is the reason why Tan and
Narasimhan [9] chose MS technique as a benchmark for
conducting comparisons with the simulated annealing
(SA) approach they proposed. They concluded that SA
outperformed MS in all but three instances with
percentage improvements not greater than 6%.
In this paper we propose a memetic algorithm (MA) for
solving the SMS with sequence-dependent setup times.
MAs are a class of population-based algorithms that
generalizes the well-known hybrid genetic algorithms,
which combines the strength of the GAs and local search.

2. NEIGHBORHOOD CONCEPTS

The first neighborhood implemented was the All-Pairs
Interchange. It consists in swapping all pairs of jobs in a
given solution. A 'hill-climbing' algorithm can be defined
by reference to this neighborhood; i.e. starting with an
initial permutation of all jobs, every time a proposed
interchange reduces the makespan it is confirmed and
another cycle of interchanges takes place, until no
improvement is obtained anymore. The second
neighborhood implemented was the Insertion
neighborhood. It consists of removing a job from one
position and inserting it into another one. The 'hill-
climbing' procedure is the same of the All-Pairs scheme.

Neighborhood reduction

As the neighborhood schemes are O(n2), we tried several
reduction policies. The best one turned out to be a hybrid
scheme, with reduced All-Pairs and Insertion
neighborhoods. These reduction schemes are based on sij

values only and do not take into account the due-dates.
Nevertheless the results showed considerable
improvements over non-reduced neighborhoods.

∑
=

−=
n

k
kk dcT

1

],0max[

3. MULTIPLE START AND EDD INSERTION

The multiple start algorithm implemented in this work
consists in generating an initial random solution and
making it converge to a local minimum by applying a
local search procedure. The process is iterated many times
until a stop criterion (a time limit criterion was used) is
satisfied and the best solution ever found is reported.

The EDD Insertion is a constructive procedure. It consists
of inserting the jobs according to the EDD sequence and
always in the sequence position that leads to the smallest
partial total tardiness.

4. MEMETIC AND GENETIC ALGORITHMS

GAs got recognition in the mid 70´s after John Holland's
book entitled 'Adaptation in Natural and Artificial
Systems' was published. Since then, due to its simplicity
and efficiency, GAs became widespread, and in the 80´s,
a new class of 'knowledge-augmented GAs', sometimes
called 'hybrid GAs', started to appear in the literature.
Recognizing important differences and similarities with
other population-based approaches, some of them were
categorized as memetic algorithms (MAs) in 1989 [5].

Population structure

A population structure approach based on a ternary tree
was chosen. In contrast with a non-structured population
it divides the individuals in clusters and restricts crossover
possibilities.

Figure 1. Population structure

The structure consists of several clusters and each cluster
consists of a leader and three supporter solutions. The
leader is chosen as the best individual of the cluster. The
number of individuals in the population is defined by the
number of nodes in the ternary tree, i.e., it is necessary 13
individuals to make a ternary tree with 3 levels, 40
individuals to 4 levels and so on.

Representation

For the SMS problem the representation we have chosen
is quite intuitive, with a solution being represented as a
chromosome with the alleles assuming different integer
values in the [1, n] interval, where n is the number of
jobs.

Crossover

Two different crossover operators were implemented. The
first is the well known Order Crossover (OX). After
choosing two parents, a fragment of the chromosome from
one of them is randomly selected and copied into the
offspring. In the second phase, the offspring's empty
positions are sequentially filled according to the
chromosome of the other parent.

The second crossover we implemented was proposed by
Rubin and Ragatz for exactly this problem [8] and as they
didn't name it we chose to refer to it as RRX. According to
it, the recombination of any pair of parents always
generates 8 new individuals so it is necessary to select
which of them must be incorporated in the population.
They made comparisons with several insertion policies
and all performed similar. Eventually, they suggest the
random choice of one of the offspring.

Mutation

In our implementation a traditional mutation strategy
based on jobs swapping was implemented. According to
it, two positions are randomly selected and the alleles in
these positions swap their values.

Fitness function

In our problem the objective is to minimize the total
tardiness and the fitness function was chosen as:

where Ti is the total tardiness of solution i. The inversion
is due to the fact that a large total tardiness means a low
fitness. The total tardiness was increased by one to prevent
a division by zero when Ti =0. A fitness function similar
to this was also used in [1] and [8].

Offspring insertion in population

Once the leader and one supporter are selected, the
recombination, mutation and local search take place and
an offspring is generated. If the fitness of the offspring is
better than the leader, the new individual takes its place.
Otherwise it takes the place of the supporter that took part
in the recombination. If the new individual is already
present in the population, it is not inserted. We adopted a
policy of not allowing duplicated individuals to reduce
loss of diversity. After all individuals were inserted, the
population is restructured. The fitness of the leader of a
group must be lower than the fitness of the leader of the
group just above it. Following this policy, the higher
subgroups will have leaders with better fitness than the
lower groups and the best solution will be the leader of the
root subgroup. The adjustment is made by comparing the
leader of each subgroup with the leader of the subgroup

Leader

Supporters

Cluster

() 11 −+= ii Tf

just above. If the leader in the level below turns out to be
better, they swap their places.

5. COMPUTATIONAL RESULTS

Instances are characterized by three parameters: size, due
date range factor (R) and tardiness factor (τ). The factor R
controls the range of the due date distribution while τ
provides an indication of the average tightness of the due
dates. The generation of processing times and setup times
followed a discrete uniform distribution: DU(0, 100). The
definitions for the due date factor and tardiness factor
adopted in our experiments are the same used in [6]. The
due date's interval ∆d and mean dm is given by the
equations:

∆d = R.n.pm dm = (1 - τ).n.pm

where pm is the mean processing time.

We chose 9 combinations for (τ, R) pairs and CPU time
was fixed in 2 minutes for MS, GAs and MAs. The
software was implemented using Sun Java JDK 1.2 and
run using a PC-Compatible PENTIUM II 266 MHz.

Each value in table one is the mean result for a set of 5
runs for each size of instance – 20, 40, 60, 80 and 100
jobs. The performance was calculated as the percentage
improvement over the MS solution using All-pairs
Interchange local search without neighborhood reduction.

Table 1: Mean results for MA, GA, ATCS and EDD
Insertion

Genetic Alg. Memetic Alg.
(τ, R) RRX OX RRX OX ATCS EDD ins

(0.2, 0.2) -58.6 1.9 14.0 32.8 -22.8 -31.7
(0.2, 0.6) -71.9 -13.6 26.9 59.2 -49.7 -93.3
(0.2, 1.0) -129.2 -74.1 37.9 71.1 -71.8 -161.4
(0.6, 0.2) -17.5 -3.5 4.0 11.7 -5.0 -10.8
(0.6, 0.6) -16.7 -5.5 4.0 13.6 -7.1 -5.4
(0.6, 1.0) -23.3 -5.6 2.9 13.7 -8.7 -10.7
(1.0, 0.2) -11.4 -2.9 1.4 5.3 -0.5 -5.0
(1.0, 0.6) -8.9 -3.3 1.6 5.2 -1.2 -4.6
(1.0, 1.0) -7.8 -2.9 2.2 5.6 -0.2 -3.2

Mean -31.8 -12.1 10.5 24.2 -18.6 -32.7

6. CONCLUSIONS

Results on GA and MA indicate the OX as the best
crossover operator. The RRX crossover performed poorly,
probably because of the quick loss of diversity in this
crossover. GA with OX lost for the MS in almost all
cases, although the loss was close, rarely by more than
10%. On the other way, the MA performance was much
better, always outperforming MS. For τ = 0.2 the
percentage results were extremely high. That is because in
these cases, the optimal total tardiness values zero or lies
near zero. Therefore, any deviation will return very high
percentage values. The ATCS dispatching rule did well,

beating the EDD Insertion strategy in all but one set of
data. Its performance gets better as the number of jobs
increases. For more than 80 jobs the ATCS can rival MS
and beat GA in almost all parameter configurations.

The overall performance of the different methods
was: MA was the best one, followed by the GA with OX
operator; ATCS came right next followed by the other
GA; the worst performance was obtained by EDD
Insertion rule.

Acknowledgements

This work would have not been possible without
the support of Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) and Fundação de
Amparo à Pesquisa do Estado de São Paulo (FAPESP).

7. REFERENCES

[1] Cheng, R. and Gen, M., Parallel Machine Scheduling
Problems Using Memetic Algorithms, Computers &
Ind. Eng. (33), n. 3-4, pp. 761-764 (1997).

[2] Du, J. and Leung, J. Y. T., Minimizing Total
Tardiness on One Machine is NP-hard. Math. Opns.
Res. (15), pp. 483-495 (1990).

[3] Graves, S. C., A Review of Production Scheduling,
Operations Research (29), pp. 646-675 (1981).

[4] Lee, Y. K., Bhaskaran, K. and Pinedo, M., A
Heuristic to Minimize the Total Weighted Tardiness
with Sequence-dependent Setups, IIE Transactions
(29), pp. 45-52, (1997).

[5] Moscato, P., On Evolution, Search, Optimization,
Genetic Algorithms and Martial Arts: Towards
Memetic Algorithms, Caltech Concurrent
Computation Program, C3P Report 826 (1989).

[6] Ow, P. S. and Morton, T. E., The Single Machine
Early/Tardy Problem, Management Science (35), n.
2, pp. 177-191, (1989).

[7] Ragatz, G. L., A Branch-and-Bound Method for
Minimum Tardiness Sequencing on a Single
Processor with Sequence Dependent Setup Times. In
Proceedings: Twenty-fourth Annual Meeting of the
Decison Sciences Institute, pp. 1375-1377, (1993).

[8] Rubin, P. A. and Ragatz, G. L., Scheduling in a
Sequence Dependent Setup Environment with
Genetic Search, Computers & Ops. Res. (22), n. 1,
pp. 85-99 (1995).

[9] Tan, K. C. and Narasimhan, R., Minimizing
Tardiness on a Single Processor with Sequence-
dependent Setup Times: a Simulated Annealing
Approach, OMEGA (25), n. 6, pp. 619-634 (1997).

